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Heat transfer in a circular tube in the presence of laminar forced con-
vection is investigated with allowance for thermal interaction at the
solid-fluid boundary.

We consider the stationary problem of heat trans-
fer for laminar forced convection in a circular tube,
This problem was first investigated at the end of the
nineteenth century in connection with the solution of
the so-called Graetz problem. Since then the problem
has been solved repeatedly for different boundary con-
ditions and by different methods [1—4].

Usually, in solving problems of heat transfer be-
tween a solid body and a fluid flow the conditions at
the inner surface of the body are assumed given,

In the presence of intense heat transfer, for exam-
ple, this assumption is not satisfactory, since it does
not account for the thermal interaction between solid
and fluid. The temperature or flux at the inner surface
cannot be given a priori, but should be obtained from a
joint solution of the equations of heat propagation in
the fluid and in the solid. It is then necessary to solve
the so-called conjugate problem of heat transfer,

Certain specific examples of this problem were
formulated and solved in {5, 6].

We obtain an exact solution ofthe conjugate problem
of heat transfer in a semi-infinite circular tube of
finite thickness filled with a moving incompressible
fluid, for a steady-state Poiseuille velocity distribu-
tion with allowance for mechanical energy dissipation.

§1. Mathematically, the problem reduces to the
solution in dimensionless variables of the equation for
the fluid
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§2, Consider first the boundary value problem (1)—
(8). Usually the Pe number is very large and Eq. (1)
becomes
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We seek a solution of (10) with (2)—(3) in the form
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where 0, is the solution of (10) satisfying the boundary
conditions
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We seek a solution of (10), (12)~(13) as a sum of two
functions,
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It is easy to show that the solution of (21)—(22) is
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where a = 1/2 — P, /4; 1Fi(a, 1, P p%) is a confluent hy-
pergeometric function.

From (22} with p = 1 we obtain the characteristic
equation for P, i.e.,
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(the roots of (25) are given in [7]).

The constants B, are determined by substituting
(20) into (18) with ¢ = 0 taking into account the ortho-
gonality of R (p) on the interval [0, 1]
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Applying the superposition principle, we obtain
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Considering (11), (17), (20), (27), we obtain the
solution of (1)~(3):
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§3. We obtain the solution of problem (4)—(6) using
the generalized Fourier sine transformation [8]. The
transform is
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Inverse transforming in (29), we obtain
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84. Now we find the unknown function x(£). Apply~
ing the generalized Fourier sine transformation to
(28) and substituting the result obtained and (29) into
the transformed condition (8), we obtain
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Equation (33) is a singular integral equation with a
Cauchy kernel [9].

§5. To solve (34) we use the idea of analytic con-
tinuation in the ¢omplex domain.

Equation (33) is reduced to a Riemann problem with
discontinuous coefficients.

Introducing the piecewise-analytic function
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where the contour L is the positive part of the real
axis, and using the Sokhotskii~-Premelj formula, we
obtain
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A solution of the inhomogeneous Riemann problem
(37) can be easily obtained by taking the index of the
problem v = 0 (the proof and the detailed solution of
this assertion will be presented elsewhere}. Then

0% (@) =X* (1) ¥ (2),

where

X*(@ =exp[T* ()], X" (@=exp[T—(2)], (38)

T@)= —— j“‘—aﬂdr. (39)

oni T2
i

ve)= 5 | £

2ni ; X*r) T—=2

]

-G-(t)={G(t), 0<t< oo,
1, —ow <t<0;
= gt), 0<t< oo,
)= : 40

Using the Sokhotskii~-Plemelj formula and (38)—~(40),
we obtain

D* () = X* (1) [% )%’ *(2‘) + ‘If(t)} , (41)
o () = X~ (8) [—~ + ;;’(’2) +v (t)] L (42)

where
X*(®) =V G@exp [T )],

X—() =

exp [T )],

1
Vo



58

0= | 280 4,

i T—t
4

1 glv) dt

YO =55 J @ =1
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From (32) and (43), we derive the transform of the
unknown function
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The unknown function y{£) is given by
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The unknown temperatures 6 and 8, are obtained by
substituting (45) and (44) into (28) and (30), respec-
tively.

NOTATION

T is the temperature of the fluid; Tg is the tem-
perature of the solid; ¥(z) is the temperature at the
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outer surface of the tube; § = T/x(=) is the dimension-
less temperature of the fluid; 8 = To/x(=) isthe dimen-
sionless temperature of the solid; r and z are space
coordinates; ¢ = z/PeR, p = r/R are dimensionless
space coordinates; R is the tube radius; R; — R is
the thickness of the solid; Pe = vgR/a; vg = 2vy; vy is
the mean velocity; Pr = v/a is the Prandtl number;

C is the specific heat; I is the mechanical equivalent
of heat; Hy = 16Prv}/Cix(«); K) = M/Ae; A isthether-
mal conductivity of the fluid; A, is the thermal con~
ductivity of the solid; H = 16v v§/CIR?.
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